当前位置:和仁网 > 其它 > 正文

studiofow是什么

2022-12-04 18

studiofow是矩阵的秩;

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。 m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足的。

设A是一组向量,定义A的极大无关组中向量的个数为A的秩。 

区别

1、在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。 例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。

2、A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA或R(A)。 特别规定零矩阵的秩为零。 显然rA≤min(m,n) 易得: 若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。

由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。 由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。

StudioFOW是欧美同人动画界非常知名的社团,和大多数同人动画制作者一样,使用Valve开发的Source Filmmaker工具制作,但是由于其作品超高精细度和还原度在同行之中相当出众。其作品目前更新到10部
本周热门